
 1

Design and Implementation of Punjabi Spell Checker

Gurpreet Singh Lehal
Department of Computer Science, Punjabi University, Patiala, India.

gslehal@yahoo.com

Abstract :
Spellcheckers are the basic tools needed for word

processing and document preparation. Designing a spell
checker for Indian languages such as Punjabi poses many new
challenges not found in English, which complicates the design
of the spell checker. Punjabi language is far different from
Western languages in phonetic properties and grammatical
rules. Thus the existing algorithms and techniques that are
being used to check the spelling and to generate efficient
suggestions for mis-spelt words of English and other Western
languages are not actually suitable for Punjabi; rather it needs
different algorithms and techniques for expected efficiency.
This paper presents the complete design and implementation
of a Punjabi spell checker.

Keywords :

Punjabi, Spellchecker, Suggestion List, Typing
errors

Introduction :

Spellcheckers are the basic tools needed for word
processing and document preparation. A spell checker is a tool
that enables us to check the spellings of the words in a text file,
validates them i.e. checks whether they are right or wrongly
spelled and in case the spell checker has doubts about the
spelling of the word, suggests possible alternatives.
The main steps performed by the spell checker are:
1. Take the word from the file as its input.
2. Pre-process the word
3. Look for the word in dictionary
4. In case, the word exists, pass onto the next one.
5. If the word is not found, then seek for the closest

matching patterns and put them up in the form of
suggestions.
Even though this appears to be very simple at first

glance but designing a spell checker for Indian languages such
as Punjabi poses many new challenges not found in English,
which complicates the design of the spell checker. Punjabi
language is far different from Western languages in phonetic
properties and grammatical rules. Thus the existing algorithms
and techniques that are being used to check the spelling and to
generate efficient suggestions for mis-spelt words of English
and other Western languages are not actually suitable for
Punjabi; rather it needs different algorithms and techniques for
expected efficiency. Some of the typical problems faced
during designing the Punjabi are:
1. There is no standardization of Punjabi keyboard
layouts. There are more than forty keyboard layouts and fonts
commonly being used, which means that the same Punjabi
word can be internally stored in forty different ways. As for
example, the word pMjwbI is internally stored as

• pMjwbI in Akhar font

• pMj`bI in Amrit-Lipi2 font
• pµj;bI in Anandpur Sahib font
• gzikph in Asees font
• ê³ÜÅìÆ in Satluj font

The spell checker has to deal with each of these
cases separately and check for the spellings. Even in the same
font, a character can be typed and stored in more than one way.
As for example, in Asees font, the character P can be typed by
pressing either a single key P or a combination of two keys ;a.
Similarly the character addak (Z) can be typed by pressing key
Z or key ~.
2. Another problem, typical to Indian language scripts
was faced. Since Punjabi is not written in linear fashion, so
same word could be internally stored in more than one way.
The user can type consecutive occurring semi-vowels/upper
vowels and half character/lower matra ([or {) in any order
and they all look visually similar. For example, the word y[bQ/
can be typed by the typist as y + [+ b + Q + / or as y + [+ b + /
+ Q and both will be displayed as y[bQ/. Thus if y[bQ/ has been
typed and stored in the database as y + [+ b + Q + / if the user
types y[bQ/ as y + [+ b + / + Q then the word will be signalled
as wrongly spelled.
3. In some of the Punjabi fonts, the Punjabi characters
such as bindi, lava, onkar, dulainkar etc. have zero width and
so if by mistake a user makes multiple entries of such
characters only a single entry is visible. If the spell checker
flags such word as misspelled the user will not come to know
where the error. Thus for example, consider the word gqzs[{ it has
been typed as g q z s [{ and visually the word looks
correct but internally it has stored wrongly and the user will
not be aware where the error lies.
4. Unlike English, there is no well defined word
boundary for Punjabi words written in different Punjabi fonts.
As for example, in Asees font the following punctuation marks
are encoded as Punjabi characters and thus are part of the
word (‘ “ + / : ; ? [] \ { }). But there are many other fonts
such as Akhar, Satluj etc. which do not encode the above
punctuation marks as Punjabi characters. So the extraction of
word boundary is font dependent in case of Punjabi.
5. There is no standardization of Punjabi spellings. A
word may be spelled in more than one way and all the forms
may be acceptable.

Brief Description of Punjabi Language :

Punjabi is the world’s 12th most widely spoken language.
The populace speaking Punjabi is not only confined to North
Indian states of India such as Punjab, Haryana and Delhi but is
spread over all parts of the world. Punjabi is a phonetic
language and commonly written in Gurmukhi script. Some of
the major properties of the Gurmukhi alphabet are:

 2

 Gurmukhi script alphabet consists of three (u a e)
vowel-carrier letters and nine vowel signs. By using the
vowel signs with the three vowel-carrier letters ten
vowels are obtained. The vowel-carriers u and e are
never used without a vowel sign.

 There are 38 consonants and all the ten vowel-signs are
used with all the other consonants (Fig. 1).

 In addition there are two nasal signs : (bindi) and ̂ (tippi)
used for sounds produced through nasal cavity. The
symbol adhak & , is used to produce the sound of a double
consonant.

 There are three half characters in Gurmukhi alphabet.
The complete character set of Gurmukhi is depicted in
Fig. 1.

Vowels
a aA ie eI uU u< eE a> o aO

Vowel carriers
u a e
Consonants
 s h c k g G L
C x j J M t T D Q N
V W d Y n p f b B m
y r l v R S z K F Z æ
Matras
A i I U < E > ~ O
Vowel Modifiers or Half Vowels
 : ̂ &
Half Characters
 H q X
Fig 1 : Gurmukhi character set

Lexicon Creation :
The first step in development of the spell checker is the
creation of a lexicon of correctly spelled words, which will be
used by the spell checker to check the spellings as well as
generate the suggestions. Two issues are involved in lexicon
development:
• Size of the lexicon : There are two approaches
followed for storing the lexicon. The first approach stores the
root words of a language and the rest of the words are derived
from these root words. The other approach is to store all the
possible words of the language in the lexicon. We have
followed the second approach and stored all the possible forms
of words of Punjabi lexicon. Around 1.5 lakh words were
identified and stored in the database. The words are arranged
according to the word size. During program execution the
words are loaded into AVL trees and sixteen different AVL
trees used for different word lengths. The number of nodes in
each of these AVL tree is shown in Fig. 2.
• Format of the words : As there is no standardized
Punjabi keyboard, a word in Punjabi may be written in more
than forty different ways. It was necessary to formalize a
format for storing the lexicon. One option was to store a word
in ISCII (Indian Standard Code for Information Interchange)
or Unicode. But that option was dropped, since the coding
schemes are not closer to how a user actually types. As for
example, if a user types ipMRs then it will be stored in ISCII as
(p + chr(232) + r + i + M + s), while the user will
be typing it as (i + p + M+ R + s). It is necessary to store
the words in same order as they are typed as this knowledge is
helpful in generating the suggestion list. It was also necessary

to assign coding beyond ASCII 127 to the characters, since in
most the databases the searching algorithms do not
differentiate between upper and lower case characters. Thus
two characters assigned codes corresponding to ASCII 'a' and
'A" will be treated to be same for sorting and searching
purposes. Also care was taken that if a half character or a
lower matra ([or {) and a semi-vowel occur together , then
semi-vowel will be stored after the half character or lower
matra. The coding scheme displayed in Table 1 is used to
codify the Punjabi letters.

0

5000

10000

15000

20000

25000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >16

Word Length

N
od

es

Fig. 2 : Node count in AVL trees of different word lengths

Table 1 : Gurmukhi coding scheme

Code Punjabi
Symbol

 Code Punjabi
Symbol

128 : 149 M
129 & 150 R
130 ̂ 151 N
131 T 152 m
132 U 153 v
133 n 154 Y
134 J 155 D
135 ; 156 s
136 F 157 E
137 j 158 d
138 e 159 X
139 y 160 B
140] 161 g
141 r 162 c
142 | 163 \
143 x 164 p
144 C 165 G
145 u 166 w
146 S 167 :
147 i 168 o
148 } 169 b
170 ba 178 I

 3

171 t 179 U

172 V 180 <

173 H 181 E

174 q 182 >

175 X 183 ~

176 A 184 O

177 i

Spell Checker Architecture :

The major components of the architecture as shown
in Fig. 3 are: Tokenisation and normalisation Pre-processing
Module, Lexicon Lookup/Error Detection Module and
Suggestion Module.

Tokenisation :

Tokenisation refers to process of breaking the text
into tokens or words using punctuation marks and spaces as
delimiters. In case of Punjabi, the punctuation delimiters vary
from font to font. As for example, in font Asees the
punctuation mark ; and : are used to store a Punjabi characters.
Similarly, the locations corresponding to the characters ` and ~
are used by majority of the Punjabi fonts. So we have to
associate with each font, the valid character set. The
spellchecker reads the text character by character along with
its font information and uses the information about the
character set of that font to tokenise the text. The tokenisation
process will check each character in the character set
corresponding to that particular font. As for example, the
following text i' fd~bhl ft~u ojzd/ jB
is encoded internally as follows in Asees font:
i' fd~bhl ft~u ojzd/ jB
The tokeniser will break the line into following tokens:
i' fd~bh ft~u ojzd/ jB
 We note that in the second token above, the
character l has been excluded since it is not part of the

character set for Asees font while the characters ' ~ and / have
been included in the tokens, since they are part of the
character set.

Normalisation :

The tokens are then made to pass through a
normalisation process to convert them to the format in which
the lexicon has been stored. Some of the major steps that are
performed in this stage are : removal of redundant zero width
characters, changing the order of upper and lower characters
and mapping the token to format compatible with the lexicon.
Thus for example, the word huMdy in typed in any Punjabi font
will be normalised as {137, 179, 130, 158, 181}.

Lexicon Lookup/Error Detection :

In this module the normalised token is searched in
the standard dictionary. The standard dictionary has been
partitioned into sixteen sub-dictionaries based on the word
length and at execution time each of these sub-dictionary is
loaded in a height balanced binary search tree (AVL tree). To
search for a word of length n, we look for its presence in the
AVL tree storing words of length n. Thus huMdy will be searched
in the AVL tree storing lexicon words of length 5. If the word
is not found, then it is searched in the AVL tree storing the
lexicon of user defined dictionary. If the word is still not
found, then it is marked and sent to Suggestion module.

Suggestion :

In this module a list of possible correct words is
presented to the user. The user selects the correct word, if it is
present in the suggestion list, and can give the command to
replace a single or all occurrences of the mis-spelled word
with the word selected in the suggestion list. The details of
this module are discussed in next section.

Suggestion List Generation :

Once the system has detected an erroneous word, it
performs the following steps:
1. Generate a list of candidate corrections
2. Rank the spelling variations
3. Select the highest ranking as the most likely

correction
The task of general purpose spelling correction has a

long history (e.g. Damerau, 1964; Rieseman and Hanson,
1974; McIlroy, 1982), traditionally focusing on resolving
typographical errors such as insertions, deletions, substitutions,
and transpositions of letters that result in unknown words (i.e.
words not found in a trusted lexicon of the language). Typical
word processing spell checkers compute for each unknown
word a small set of in-lexicon alternatives to be proposed as
possible corrections, relying on information about in-lexicon-
word frequencies and about the most common keyboard
mistakes (such as typing m instead of n) and
phonetic/cognitive mistakes, both at word level (e.g. the use of
acceptible instead of acceptable) and at character level (e.g.
the misuse of f instead of ph).

Several approaches based on minimum edit distance,
similarity key, rules, N-grams, probability and neural nets are
proposed to accomplish the task [1-5]. Of these, minimum edit
distance based approaches are the most popular ones. The
minimum edit distance is the minimum number of editing
operations (insertions, deletions and substitutions) required to
transform one text string into another. The distance is also

 INPUT PUNJABI
CHARACTER

Spell Checker

Punjabi Dictionary

Punjabi Font Character Sets

KSI

Display Suggestion

Pr
ep

ro
ce

ss
or

User Dictionary

Word

Normalization

Tokenization

Error
No

Yes

KS2

KS3

KS4

KS5

Bigram List

Punjabi Dictionary

User Dictionary

Phonetic Analysis

Frequency Analysis

Frequency List

Su
gg

es
tio

n
lis

t
ge

ne
ra

to
r

Su
gg

es
tio

n
lis

t
so

rt
er

 4

referred to as Damerau-Levenshtein distance after the pioneers
who proposed it for text error correction[6-7]. In its original
form, minimum edit distance algorithms require m
comparisons between misspelled string and the dictionary of
m words. After comparison, the words with minimum edit
distance are chosen as correct alternatives. To improve the
speed, a reverse minimum edit distance is used where a
candidate set of words is produced by first generating every
possible single-error permutation of the misspelled string and
then checking the dictionary if any make up valid word.

In our present approach, we have used the reverse
minimum edit distance to generate the primary suggestion list.
Additional words which are phonetically similar to the
misspelled words are also added to the suggestion list. The
main time in reverse minimum edit distance approach is spent
on checking the dictionary for valid word. To decrease the
number of words for dictionary lookup, we filter them based
on a bigram table. Thus for example, if in a word we have a
vowel followed by another vowel, then there is no need to
check for that word in the dictionary, since two vowels do not
form a valid bigram just as in English qq is not a valid bigram.
As another example, for the misspelled word kIr the
suggestion list generator will try to remove the deletion error
by inserting a new character at each location. If say it is trying
to insert an extra character at second place, then the following
generated words would be rejected by the bigram analyser and
the time for searching these words in the dictionaries can be
saved.
kwIr kiIr kuIr kUIr kyIr kYIr koIr kOIr kNIr kMIr kSIr
kaIr kAIr kEIr
 For suggestion list generation, the results of error analysis
for Punjabi carried out earlier [8]were used. In that study
about 20000 misspelled words generated by typists, both
novice and experienced as well as students learning Punjabi
typing were analysed and it was found that the following
seven types of Punjabi typing errors occur:
i. Insertion error (IE): When at least one extra

character is inserted in the desired word. pirvwr -
> pirvdwr

ii. Deletion error (DE): When at least one character is
deleted in the desired word. . pirvwr -> pirvr

iii. Substitution error (SE): When at least one
character is substituted by the other character.
pirvwr -> pirvnr

iv. Transposition error (TE): When two adjacent
characters are transposed. pirvwr -> pirvrw

v. Run-on error (ROE): When there is space missing
between two or more valid words. pirvwr rsBrI
-> pirvwrrsBrI

vi. Split Word error (SWE): This is Opposite of Run-
on error when some extra space is inserted between
parts of a word. The error can be removed by
removing the extra space. pirvwr -> pi rvwr

vii. Visual error (VE) : When a word looks visually
correct but internally it is invalid. As for example,
the word auyh visually looks to be rightly spelled but
internally it is stored as a u y h . The extra vowel
symbol y is hidden under the character a.This error is
typical to Punjabi typing.

 It was observed in the study [8], that the most
common typing errors are substitution and deletion errors.

The Cognitive errors are mainly phonetic based, as
Punjabi is a phonetic language. Main confusion is related to:
– Usage of addak (EK¢ ieËq smisEw kF ÈuD)
– Usage of pairin bindi characters (sL, gL, KL, PL, jL,

lL) (EwjwdI sKq)
– Others (kIqwb gXw)

For generating the suggestion list, the following five
knowledge sources have been used:
• KS1 (Character Substitutor) : The Character

Substitutor corrects mistakes that arise due to wrong
typing of a character. It substitutes each character
with other valid characters.

• KS2 (Character Inserter) : The Character Inserter
corrects erroneous words that have one character
missing.

• KS3 (Character Remover) : The Character Remover
corrects an erroneous word by removing a single
character to produce a correct word.

• KS4 (Subsequent Character Switcher) : The
Subsequent Character Switcher swaps two
consecutive characters in an erroneous word to
generate a correct word.

• KS5 (Phonetic Similar Tester) : The Phonetic
Similar Tester tests if the suggested word is
phonetically similar to the erroneous word.

Sorting the Suggestion List :

After gathering the suggestions, the sorting
procedure is executed to sort out the suggestion list efficiently
so that user may get the suggestions in the most useful format.
For the efficiency of the spell checking process, it is important
that the right suggestion is presented as a default suggestion.
In such a case, the user needs only to confirm the default
suggestion and proceed with the next error. Otherwise, the
user needs to scroll through a list of suggestions and pick one
as the right one. Even worse, often the right suggestion is not
on the list and thus the user needs to type the full word again.
In order to sort the suggestion list most usefully, we have
used three parameters:
1. Phonetic similarity of the suggested word with the

related misspelt word
2. Frequency of occurrence of the suggested word
3. The smallest number of substitutions, insertions and

deletions required in that order to change the
misspelt word to the suggested word.

As an example, for wrongly spelled word disEw
The Suggestion list generated is
• DisEw PisEw kisEw risEw visEw GisEw dieEw

dihEw dirEw dibEw digEw diÜEw idisEw
dSisEw duEw dIEw dUEw dsqw

After sorting, the suggestion list is reordered as
• dSisEw idisEw dirEw dibEw digEw diÜEw

dihEw dieEw dsqw dIEw dUEw duEw DisEw
PisEw kisEw risEw visEw GisEw

Similarly, for wrongly spelled word pMjb
The suggestion list before sorting is

• pMjy pMjI pMjw pMjyb pMjwb pMj
The suggestion list after sorting is:

 5

• pMjwb pMj pMjw pMjyb pMjy pMjI

Evaluating the Suggestion List :

Evaluating the Suggestion List provided by a Spell
Checker involves considering three factors:
• Whether the desired word appears on the suggestion

list;
• the length of the list of words offered, and;
• the position of the desired word on the list.

The ideal spell checker would offer one word on the
list, and that would be correct. If ten words are offered and the
correct word is near the bottom, a poor speller must read
through the choices and disregard the first few despite their
precedence, instead looking for the word which they know, in
some way, to be correct. If so many words are offered that
they cannot all be seen at once, it is even more difficult to find
the correct word.

Test words :

We used 225 most commonly mis-spelled words to
analyse the performance of the spell checker. The words were
drawn from several sources:
• Punjabi corpus prepared by Ministry of Information

Technology
• Online Punjabi Newspapers
• Online Punjabi stories
• Punjabi Research Reports
Table 2 : Spellchecker test words, alphabetically listed
T[jBk nkD ;w/
T[uhnK nKdh ;kjp
T[u/ nktki ;kfps
T[sgZsh n?It/I f;x
T[dkojD fJ;s'I f;XksK
T[BZsh fJjBk f;oc
T[BQk fJjB/ ;[jgZD
T[BK fJZem ;[N
T[Bh fJZeb/ ;[fNnk
T[gobh fJziBhno ;[BD
T[gbZpX fJ}s ;[o{
T[oc fJZBk ;{ch
T{; fJBK ;'bK
T{j J/BQK FBkys
nypko ;ys Fohc
nypkoK ;ysh F[X
nyK ;sZjh j;
nzro/ih ;pih j;fdnK
nr'I ;pzXs j;dh
nEo{ ;zpzXs j;d/
nfXnB ;pzXK je
ncrkfB;skB ;ZG jE'I
nfwqs;o ;wf;nk jd
nke/ ;wkie jb
nkikdh ;w[u/ j{D
eZm/ d;dh p[bQK
eY d;d/ GD'Jhnk

eYD dkjVh GD'JhJ/
eZbh fdsk G[yk
eZb/ d[BhnK wip{o
ekr} d/e/ wZdd
ekB{B d/ye/ wX
ekfbi d/Idh wB[yh
fezBK d/IdhnK woih
fet/ d/th wkBD
fyu d't/ wkc
fybkc BJhI wKpkg
y[Zbk Bio wkoe/
rbpks Bcos fwso
r[;/ BkjhI fwso'
r{o{ BktK fwbe/
xNBKtk fB;uk whsh
ueo fB;fus w[;eqk
fumh fB;u/ w[;eqkT[Idh
fuzB fBZeb w[;eqkjN
uhiK fBe/ w[zj
u[fenk B[;yk w[e
u[ehnK B[;y/ w[Y
Sv B{ w[Bkck
SvD B' w[cs
SKt/ gSwh w[Ve/
S[N goekF w?I~
ijh gopzX w's
ijhnK gokgs :[X
ij/ go'rokw :[Bhtof;Nh
ii gVQe/ oye/
iZE/ gVQD oy'
id' gqf;X ocsko
ike/ gqzgok okih
ikBD gqzgoktK brD
fiBK gq'Vsk bfrnK
fit/ g[Sdk brhnK
f}bk g[i bG
f}b/ g[i/ bGdk
N[N g[so bkJhe
soQk c[bK bke/
s[z pi/ fbikD
s{;hI pDe/ b?e/
s/I pDke/ ty
s?I~ pBD tyok
EktK pBkT[D tyoh
E'v/ pBkD tyo/
d;D pkjK tckdkoh
d;Dk p[bQ toBD
toBD:'r ftu' t/ye/

 6

These words were fed to the spell checker and

statistics such as the position of the word in the suggestion list,
the maximum, minimum and average size of the suggestion
list were generated (Table 3). It was observed that for 4.39%
of the words, the correct word was not displayed in the
suggestion list, while for 81.14% of wrongly spelled words,
the correct word was displayed on the top of the suggestion
list. The minimum and maximum size of the suggestion list is
1 and 52 respectively. The average size of the suggestion list
is 15, which is on a higher side, though in 93.4% of cases, the
correct word is present in top 10 words of the suggestion list.

Conclusion :

This is the first time that a spell checker for Punjabi
language has been designed and implemented. The spell
checker is part of the commercial Punjabi word processor
Akhar. We have only taken care of non-real word errors.
Detection and correction of real word errors is a subject of
further research.
Table 3 : Average position of the correct word in suggestion
list

Position Percentage of Occurrence
Top 81.14%
Top 3 85.53%
Top 5 89.03%
Top 10 93.42%
In List 95.61%

References :
1. E. Brill and R. Moore, " An improved error model

for noisy channel spelling correction," Proceedings
of the ACL 2000, 2000, 286-293.

2. A. R. Golding, " A Bayesian hybrid method for
context- sensitive spelling correction ," Proceedings
of the Workshop on Very Large Corpora, 1995, 39-
53.

3. A.R. Golding and D. Roth, " Applying winnow to
context-sensitive spelling correction," Proceedings
of ICML, 1996, 182-190.

4. K. Kukich, " Techniques for automatically
correcting words in a text," Computing Surveys
24(4), 1992, 377-439.

5. E.J. Yannakoudakis and D. Fawthrop,"An
Intelligent spelling corrector," Information
Processing and Management 19(12), 1983, 101-108

6. F.J. Damerau, " A technique for computer detection
and correction of spelling errors," Communications
of ACM 7(3), 1964, 171-176.

7. V.I. Levenshtein , "Binary codes capable of
correcting deletions, insertions and reversals,". Sov.
Phys. Dokl.,10, 1966, 707-710.

8. G.S. Lehal and M. Bhagat, " Error Pattern in
Punjabi Typed Text," Proceedings of International
Symposium on Machine Translation, NLP and TSS,
2004, 128-141.

